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Abstract. Requirements of cyberphysical systems (CPS) can be rigorously spec-
ified using Signal Temporal Logic (STL). STL comes equipped with semantics
that are able to quantify how robustly a given signal satisfies an STL property. In
a setting where signal values over the entire time horizon of interest are available,
efficient algorithms for offline computation of the robust satisfaction value have
been proposed. Only a few methods exist for the online setting, i.e., where only a
partial signal trace is available and rest of the signal becomes available in incre-
ments (such as in a real system or during numerical simulations). In this paper, we
formalize the semantics for robust online monitoring of partial signals using the
notion of robust satisfaction intervals (RoSIs). We propose an efficient algorithm
to compute the RoSI and demonstrate its usage on two real-world case studies
from the automotive domain and massively-online CPS education. As online al-
gorithms permit early termination when the satisfaction or violation of a property
is found, we show that savings in computationally expensive simulations far out-
weigh any overheads incurred by the online approach.

1 Introduction

Embedded software designers typically validate designs by inspecting concrete ob-
servations of system behavior. For instance, in the model-based development (MBD)
paradigm, designers use numerical simulation tools to obtain traces from models of
systems. An important problem is to efficiently test whether some logical property ϕ
holds for a given simulation trace. It is increasingly common [15, 11, 14, 3, 18, 2, 16] to
specify such properties using a real-time temporal logic such as Signal Temporal Logic
(STL) [9] or Metric Temporal Logic (MTL) [12]. An offline monitoring approach in-
volves performing an a posteriori analysis on complete simulation traces (i.e., traces
starting at time 0, and lasting till a user-specified time horizon T ). Theoretical and
practical results for offline monitoring [12, 7, 9, 20] focus on the efficiency of monitor-
ing as a function of the length of the trace, and the size of the formula representing the
property ϕ.

There are a number of situations where offline monitoring is unsuitable. Consider
the case where the monitor is to be deployed in an actual system to detect erroneous
behavior. As embedded software is typically resource constrained, offline monitoring
is impractical as it requires storing the entire observed trace. In a simulation tool that
uses numerical techniques to compute system behaviors, obtaining even one signal trace
may require several minutes or even hours. If we wish to monitor a property over the
simulation, it is usually sensible to stop the simulation once the satisfaction or violation



of the property is detected. Such situations demand an online monitoring algorithm,
which has markedly different requirements. In particular, a good online monitoring al-
gorithm must: (1) be able to generate intermediate estimates of property satisfaction
based on partial signals, (2) use minimal amount of data storage, and (3) be able to run
fast enough in a real-time setting.

Most works on online monitoring algorithms for logics such as Linear Temporal
Logic (LTL) or Metric Temporal Logic (MTL) have focussed on the Boolean satisfac-
tion of properties by partial signals [13, 10, 21]. Recent work shows that by assigning
quantitative semantics to real-time logics such as MTL and STL, problems such as
bug-finding, parameter synthesis, and robustness analysis can be solved using power-
ful off-the-shelf optimization tools [1, 6]. The quantitative semantics define a function
mapping a property ϕ and a trace x(t) to a real number, known as the robust satisfaction
value. A large positive value suggests that x(t) easily satisfies ϕ, a positive value near
zero suggests that x(t) is close to violating ϕ, and a negative value indicates a violation
of ϕ. While the recursive definitions of quantitative semantics naturally define offline
monitoring algorithms to compute robust satisfaction values [12, 9, 7], there is limited
work on an online monitoring algorithm to do the same [5].

The theoretical challenge of online monitoring lies in the definition of a practical
quantitative semantics for a temporal logic formula over a partial signal, i.e., a signal
trace with incomplete data which may not yet validate or invalidate ϕ. Past work [10]
has identified three views for the satisfaction of a LTL property ϕ over a partial trace τ :
(1) a weak view where τ satisfies ϕ if there is some suffix τ ′ such that τ.τ ′ satisfies ϕ,
(2) a strong view where τ does not satisfy ϕ if there is some suffix τ ′ such that τ.τ ′ does
not satisfy ϕ and (3) a neutral view when the satisfaction is defined using a truncated
semantics of LTL restricted to finite paths. In [13], the authors extend the truncated
semantics to MTL. In [5], the authors introduce the notion of a predictor, which works
as an oracle to complete a partial trace and provide an estimated satisfaction value. In
general, such a value cannot be formally trusted as long as the data is incomplete.

The layout of the paper is as follows: In Section 3, we present robust interval seman-
tics for an STL property ϕ on a partial signal (with data available till time ti, denoted
x[0,i]) that unifies the different semantic views of real-time logics on truncated paths.
Informally, we define a function that maps x[0,i] and ϕ to the robust satisfaction inter-
val (RoSI) (`, υ), with the interpretation that for any suffix x[ti+1,tN ], ` is the greatest
lower bound on the robust satisfaction value of xN , and υ is the corresponding lowest
upper bound. There is a natural correspondence between the RoSI and three-valued se-
mantics: (1) ϕ is violated according to the weak view iff υ is negative, and is satisfied
otherwise; (2) ϕ is satisfied according to the strong view iff ` is positive, and violated
otherwise; and (3) a neutral semantics, e.g., based on some predictor, can be defined
when ` < 0 < υ, i.e., when there exist suffixes that can violate or satisfy ϕ.

compute the RoSI for a bounded-time-horizon formula. Our approach
In Section 4, we present an efficient online algorithm to compute the RoSI for a

bounded-time-horizon STL formula by extending the offline algorithm of [7]. In spite
of being online, the extension imposes minimal runtime overhead. It works in a fashion
similar to incremental Boolean monitoring of STL implemented in the tool AMT [21].
In Section 5, we present algorithms that can perform online monitoring of commonly-
used unbounded time-horizon formulas using only a bounded amount of memory.



Finally, we present experimental results on two large-scale case studies: (i) industrial-
scale Simulink models from the automotive domain in Section 6, and (ii) an automatic
grading system used in a massive online education initiative on CPS [17]. Since the
online algorithm can abort simulation as soon as the satisfaction of the property is de-
termined, we see a consistent 10%-20% savings in simulation time (which is typically
several hours) in a majority of experiments, with negligible overhead (< 1%). In gen-
eral, our results indicate that the benefits of our online monitoring algorithm over the
offline approach far outweigh any overheads.

2 Background

Interval Arithmetic. We now review interval arithmetic. An interval I is a convex
subset of R. A singular interval [a, a] contains exactly one point. Intervals (a, a), [a, a),
(a, a], and ∅ denote empty intervals. We enumerate interval operations below assuming
open intervals. Similar operations can be defined for closed, open-closed, and closed-
open intervals.

1. −I1 = (−b1,−a1)
2. c+ I1 = (c+ a1, c+ b1)

3. I1 ⊕ I2 = (a1 + a2, b1 + b2)
4. min(I1, I2) = (min(a1, a2),min(b1, b2))

5. I1 ∩ I2 =

{
∅ if min(b1, b2) < max(a1, a2)

(max(a1, a2),min(b1, b2)) otherwise.

(2.1)

Definition 1 (Signal). A time domain T is a finite or infinite set of time instants such
that T ⊆ R≥0 with 0 ∈ T . A signal x is a function from T to X . Given a time domain
T , a partial signal is any signal defined on a time domain T ′ ⊆ T .

Note that X can be any set, but it is usual to assume some subset of Rn. Simulation
frameworks typically provide signal values at discrete time instants, usually this is a
by-product of using a numerical technique to solve the differential equations in the
underlying system. These discrete-time solutions are assumed to be sampled versions
of the actual signal, which can be reconstructed using some form of interpolation. In
this paper, we assume constant interpolation to reconstruct the signal x(t), i.e., given
a sequence of time-value pairs (t0,x0), . . . , (tn,xn), for all t ∈ [t0, tn), we define
x(t) = xi if t ∈ [ti, ti+1), and x(tn) = xn. Further, let Tn ⊆ T represent the finite
subset of time instants at which the signal values are given.
Signal Temporal Logic. We use Signal Temporal Logic (STL) [9] to analyze time-
varying behaviors of signals. We now present its syntax and semantics. A signal predi-
cate µ is a formula of the form f(x) > 0, where x is a variable that takes values from
X , and f is a function from X to R. For a given f , let finf denote infx∈X f(x), i.e., the
greatest lower bound of f over X . Similarly, let fsup = supx∈X f(x). The syntax of an
STL formula ϕ is defined in Eq. (2.2). Note that 2 and 3 can be defined in terms of the
U operator, but we include them for convenience.

ϕ ::= µ | ¬ϕ | ϕ ∧ ϕ | 2(u,v)ϕ | 3(u,v)ϕ | ϕU(u,v)ϕ (2.2)

Quantitative semantics for timed-temporal logics have been proposed for STL in
[9]; we include the definition below. In the usual Boolean sense of satisfaction, a signal
x satisfies ϕ at a time τ iff the robust satisfaction value ρ(ϕ,x, τ) ≥ 0.



Definition 2 (Robust Satisfaction Value). We first define a function ρmapping an STL
formula ϕ, the signal x, and a time τ ∈ T as follows:
ρ (f(x) > 0,x, τ) = f(x(τ))
ρ (¬ϕ,x, τ) = −ρ(ϕ,x, τ)
ρ (ϕ1 ∧ ϕ2,x, τ) = min (ρ(ϕ1,x, τ), ρ(ϕ2,x, τ))
ρ (2Iϕ,x, τ) = inft∈τ+I ρ(ϕ,x, t)
ρ (3Iϕ,x, τ) = supt∈τ+I ρ(ϕ,x, t)

ρ (ϕ1UIϕ2,x, τ) = sup
t2∈τ+I

min

(
ρ(ϕ2,x, t2), inf

t1∈(τ,t2)
ρ(ϕ1,x, t1)

) (2.3)

The robust satisfaction value of a given signal x w.r.t. a given formula ϕ is then defined
as ρ(ϕ,x, 0).

3 Robust Interval Semantics

We assume finite time-horizon T for signals. Further, we assume that the signal is ob-
tained by applying constant interpolation to a sampled signal defined over time-instants
{t0, t1, . . . , tN}, such that tN = T and ∀i : ti < ti+1. In the online monitoring context,
at any time ti, only the partial signal over time instants {t0, . . . , ti} is available, and the
rest of the signal becomes available in discrete time increments. We define new seman-
tics for STL formulas over partial signals using intervals. A robust satisfaction interval
(RoSI) includes all possible robust satisfaction values corresponding to the suffixes of
the partial signal. In this section, we formalize the recursive definitions for RoSI of
an STL formula with respect to a partial signal, and next we will discuss an efficient
algorithm to compute and maintain these intervals.

Definition 3 (Prefix, Completions). Let {t0, . . ., ti} be a finite set of time instants
such that ti ≤ T , and let x[0,i] be a partial signal over the time domain [t0, ti]. We
say that x[0,i] is a prefix of a signal x if for all t ≤ ti, x(t) = x[0,i](t). The set
of completions of a partial signal x[0,i] (denoted by C(x[0,i])) is defined as the set
{x | x[0,i] is a prefix of x}.
Definition 4 (Robust Satisfaction Interval (RoSI)). The robust satisfaction interval
of an STL formula ϕ on a partial signal x[0,i] at a time τ ∈ [t0, ti] is an interval I s.t.:

inf(I) = inf
x∈C(x[0,i])

ρ(ϕ,x, τ) and sup(I) = sup
x∈C(x[0,i])

ρ(ϕ,x, τ)

Definition 5. We define a recursive function [ρ] that maps a given formula ϕ, a partial
signal x[0,i] and a time τ ∈ T to an interval [ρ](ϕ,x[0,i], τ).

[ρ]
(
f(x[0,i]) > 0,x[0,i], τ

)
=

{
[f(x[0,i](τ)), f(x[0,i](τ))] τ ∈ [t0, ti]

[finf , fsup] otherwise.

[ρ]
(
¬ϕ,x[0,i], τ

)
= −[ρ](ϕ,x[0,i], τ)

[ρ]
(
ϕ1 ∧ ϕ2,x[0,i], τ

)
= min([ρ](ϕ1,x[0,i], τ), [ρ](ϕ2,x[0,i], τ))

[ρ]
(
2Iϕ,x[0,i], τ

)
= inft∈τ+I

(
[ρ](ϕ,x[0,i], t)

)
[ρ]
(
3Iϕ,x[0,i], τ

)
= supt∈τ+I

(
[ρ](ϕ,x[0,i], t)

)
[ρ]
(
ϕ1UIϕ2,x[0,i], τ

)
= sup

t2∈τ+I
min

 [ρ](ϕ2,x[0,i], t2),

inf
t1∈(τ,t2)

[ρ](ϕ1,x[0,i], t1))



(3.1)



Algorithm 1: SlidingMax((t0,x0), . . . , (tN ,xN ), [a, b]).
Output: Sliding maximum y(t) over times in [t0, tN ]

1 F := {0} // F is the set of times representing the monotonic edge

2 i := 0 ; s, t := t0 − b
3 while t+ a < tN do
4 if F 6= ∅ then t := min(tmin(F) − a, ti+1 − b)
5 else t := ti+1 − b
6 if t = ti+1 − b then
7 while xi+1 ≥ xmax(F) ∧ F 6= ∅ do
8 F:= F−max(F)
9 F:= F ∪ {i+ 1}, i := i+ 1

10 else // Slide window to the right

11 if s > t0 then y(s) := xmin(F)

12 else y(t0) := xmin(F)

13 F:= F−min(F), s := t

It can be shown that the RoSI of a signal x w.r.t. an STL formula ϕ is equal to
[ρ](ϕ,x, 0); we defer the proof to the full version [4].

4 Online Algorithm

Donzé et al. [7] present an offline algorithm for monitoring STL formulas over (piece-
wise) linearly interpolated signals. A naı̈ve implementation of an online algorithm is as
follows: at time ti, use a modification of the offline monitoring algorithm to recursively
compute the robust satisfaction intervals as defined by Def. 5 to the signal x[0,i]. We
observe that such a procedure does many repeated computations that can be avoided by
maintaining the results of intermediate computations. Furthermore, the naı̈ve procedure
requires storing the signal values over the entire time horizon, which makes it memory-
intensive. In this section, we present the main technical contribution of this paper: an
online algorithm that is memory-efficient and avoids repeated computations.

As in the offline monitoring algorithm in [7], an essential ingredient of the online
algorithm is Lemire’s running maximum filter algorithm [19]. The problem this algo-
rithm addresses is the following: given a sequence of values a1, . . . , an, find the max-
ima over windows of size w, i.e., for all j, find maxi∈[j,j+w) ai (similarly, for finding
the corresponding minima). We briefly review an extension of Lemire’s algorithm over
piecewise-constant signals with variable time steps, given as Algorithm 1. The main
observation in Lemire’s algorithm is that it is sufficient to maintain a descending (resp.
ascending) monotonic edge (denoted F in Algorithm 1) to compute the sliding max-
ima (resp. minima), in order to achieve an optimal procedure (measured in terms of the
number of comparisons between elements). The descending edge satisfies the property
that if i ∈ F, then ti ∈ t+ [a, b], and for all tj > ti in t+ I , x(tj) < x(ti). Lines 8 and
9 incrementally update the edge when a new point is encountered that is still within the
t + [a, b] window, and lines 11,12,13 correspond to the case where the window is slid
right as a result of updating the t. These lines then providing the sliding maximum over
t+ [a, b] at the t from which the window was advanced.

We first focus on the fragment of STL where each temporal operator is scoped by a
time-interval I , where sup(I) is finite. The algorithm for online monitoring maintains



2[0,a]

[0]

∨
[0, a]

¬

[0, a]

3[b,c]

[0, a]

y > 0

[0, a]

x > 0

[b, a+c]

Fig. 1. Syntax tree Tϕ for ϕ (given in (4.2)) with each node v annotated with hor(v).

the syntax tree of the formula ϕ to be monitored in memory, and augments the tree
with some book-keeping information. First, we formalize some notation. For a given
formula ϕ, let Tϕ represent the syntax tree of ϕ, and let root(Tϕ) denote the root of
the tree. Each node in the syntax tree (other than a leaf node) corresponds to an STL
operator ¬,∨,∧,2I or 3I .3 We will use HI to denote any temporal operator bounded
by interval I . For a given node v, let op(v) denote the operator for that node. For any
node v in Tϕ (except the root node), let parent(v) denote the unique parent of v.

Algorithm 2 is a dynamic programming algorithm operating on the syntax tree of
the given STL formula, i.e., computation of the RoSI of a formula combines the RoSIs
for its constituent sub-formulas in a bottom-up fashion. As computing the RoSI at a
node v requires the RoSIs at the child-nodes, this computation has to be delayed till
the RoSIs at the children of v in a certain time-interval are available. We call this time-
interval the time horizon of v (denoted hor(v)), and define it recursively in Eq. (4.1).

hor(v) =

 [0] if v = root(Tϕ)
I ⊕ hor(parent(v)) if v 6= root(Tϕ) and op(parent(v)) = HI

hor(parent(v)) otherwise.
(4.1)

We illustrate the working of the algorithm using a small example then give a brief sketch
of the various steps in the algorithm.

Example 1. For the formula4 in (4.2), we show Tϕ and hor(v) for each v in Tϕ in Fig. 1.
ϕ , 2[0,a]

(
¬(y > 0) ∨3[b,c](x > 0)

)
(4.2)

The algorithm augments each node v of Tϕ with a double-ended queue, that we de-
note worklist[v]. Let ψ be the subformula denoted by the tree rooted at v. For the partial
signal x[0,i], the algorithm maintains in worklist[v], the RoSI [ρ](ψ,x[0,i], t) for each
t ∈ hor(v) ∩ [t0, ti]. We denote by worklist[v](t) the entry corresponding to time t in
worklist[v]. When a new data-point xi+1 corresponding to the time ti+1 is available, the
monitoring procedure updates each [ρ](ψ,x[0,i], t) in worklist[v] to [ρ](ψ,x[0,i+1], t).

In Fig. 3, we give an example of a run of the algorithm. We assume that the algo-
rithm starts in a state where it has processed the partial signal x[0,2], and show the effect
of receiving data at time-points t3, t4 and t5. The figure shows the states of the work-
lists at each node of Tϕ at these times when monitoring the STL formula ϕ presented in
Eq. (4.2). Each row in the table adjacent to a node shows the state of the worklist after
the algorithm processes the value at the time indicated in the first column.

3 We omit the case of UI here for lack of space, although the rewriting approach of [7] can be
adapted here and is implemented in our tool.

4 We remark that ϕ is equivalent to 2[0,a]

(
(y > 0) =⇒ 3[b,c](x > 0)

)
, which is a common

formula used to express a timed causal relation between two signals.
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Fig. 2. These plots show the signals x(t) and y(t). Each signal begins at time t0 = 0, and we
consider three partial signals: x[0,3] (black + blue), and x[0,4] (x[0,3] + green), and x[0,5] (x[0,4]

+ red).

2[0,a]

∨

¬3[b,c]

y > 0x > 0

t0 = 0 t1 a

t2 [-1, -1] [2, 2] [2, 2]

t3 [-1, -1] [2, 2] [2, 2]

t4 [-1, -1] [2, 2] [2, 2]

t5 [-1, -1] [2, 2] [2, 2]

b t3 t4 a+c

t2 (xinf ,xsup) -- -- (xinf ,xsup)

t3 [-1, -1] [-2, -2] -- (xinf ,xsup)

t4 [-1, -1] [-2, -2] [2, 2] (xinf ,xsup)

t5 [-1, -1] [-2, -2] [2, 2] [2, 2]

t0 = 0 t1 a

t2 [1, 1] [-2, -2] [-2, -2]
t3 [1, 1] [-2, -2] [-2, -2]
t4 [1, 1] [-2, -2] [-2, -2]
t5 [1, 1] [-2, -2] [-2, -2]

t0 = 0 t3-b t4-c a

t2 (xinf ,xsup) -- -- (xinf ,xsup)

t3 [-1,xsup] [-2,xsup] -- (xinf ,xsup)

t4 [-1, -1] [-2, -2] [2, 2] [2,xsup]

t5 [-1, -1] [-2, -2] [2, 2] [2, 2]

t0 = 0 t3-b t1 t4-c a

t2 [1,xsup] -- [−2,xsup] -- (xinf ,xsup)

t3 [1,xsup] [1,xsup] [−2,xsup] -- (xinf ,xsup)

t4 [1, 1] [1, 1] [-2, -2] [2, 2] [2,xsup]

t5 [1, 1] [1, 1] [-2, -2] [2, 2] [2, 2]

t0 = 0

t2 (xinf ,xsup)

t3 (xinf ,xsup)

t4 [−2,−2]
t5 [−2,−2]

Fig. 3. We show a snapshot of the worklist[v] maintained by the algorithm for four different
(incremental) partial traces of the signals x(t) and y(t). Each row indicates the state of worklist[v]
at the time indicated in the first column. An entry marked -- indicates that the corresponding
element did not exist in worklist[v] at that time. Each colored entry indicates that the entry was
affected by availability of a signal fragment of the corresponding color.

The first row of the table shows the snapshot of the worklists at time t2. Observe
that in the worklists for the subformula y > 0, ¬y > 0, because a < b, the data required
to compute the RoSI at t0, t1 and the time a, is available, and hence each of the RoSIs
is singular. On the other hand, for the subformula x > 0, the time horizon is [b, a+ c],
and no signal value is available at any time in this interval. Thus, at time t2, all elements
of worklist[vx>0] are (xinf ,xsup) corresponding to the greatest lower bound and lowest
upper bound on x.

To compute the values of 3[b,c](x > 0) at any time t, we take the max. over values
from times t+b to t+c. As the time horizon for the node corresponding to 3[b,c](x > 0)
is [0, a], t ranges over [0, a]. In other words, we wish to perform the sliding max. over
the interval [0+b, a+c], with a window of length c−b. We can use Algorithm 1 for this
purpose. One caveat is that we need to store separate monotonic edges for the upper and
lower bounds of the RoSIs. The algorithm then proceeds upward on the syntax tree, only
updating the worklist of a node when there is an update to the worklists of its children.



Algorithm 2: updateWorkList(vψ , ti+1, xi+1)

// vψ is a node in the syntax tree, (ti+1,xi+1) is a new timepoint

1 switch ψ do
2 case f(x) > 0
3 if ti+1 ∈ hor(vψ) then
4 worklist[vψ](ti+1) := [f(xi+1), f(xi+1)]

5 case ¬ϕ
6 updateWorkList(vϕ, ti+1 ,xi+1) ;
7 worklist[vψ] := −worklist[vϕ]
8 case ϕ1 ∧ ϕ2

9 updateWorkList(vϕ1 , ti+1, xi+1) ;
10 updateWorkList(vϕ2 , ti+1, xi+1) ;
11 worklist[vψ] := min(worklist[vϕ1 ],worklist[vϕ2 ])

12 case 2Iϕ
13 updateWorkList(vϕ, ti+1 , xi+1) ;
14 worklist[vψ] := SlidingMax(worklist[vϕ], I)

The second row in each table is the effect of obtaining a new time point (at time
t3) for both signals. Note that this does not affect worklist[vy>0] or worklist[v¬y>0],
as all RoSIs are already singular, but does update the RoSI values for the node vx>0.
The algorithm then invokes Alg. 1 on worklist[vx>0] to update worklist[v3[b,c](x>0)].
Note that in the invocation on the second row (corresponding to time t3), there is an
additional value in the worklist, at time t3. This leads Alg. 1 to produce a new value of
SlidingMax (worklist[vx>0], [b, c]) (t3−b), which is then inserted in worklist[v3[b,c]x>0].
This leads to additional points appearing in worklists at the ancestors of this node.

Finally, we remark that the run of this algorithm shows that at time t4, the RoSI

for the formula ϕ is [−2,−2], which yields a negative upper bound, showing that the
formula is not satisfied irrespective of the suffixes of x and y. In other words, the satis-
faction of ϕ is known before we have all the data required by hor(ϕ).

Alg. 2 is essentially a procedure that recursively visits each node in the syntax tree
Tϕ of the STL formula ϕ that we wish to monitor. Line 4 corresponds to the base case
of the recursion, i.e. when the algorithm visits a leaf of Tϕ or an atomic predicate of the
form f(x) > 0. Here, the algorithm inserts the pair (ti+1,xi+1) in worklist[vf(x)>0]
if ti+1 lies inside hor(vf(x)>0). In other words, it only tracks a value if it is useful for
computing the RoSI of some ancestor node.

For a node corresponding to a Boolean operation, the algorithm first updates the
worklists at the children, and then uses them to update the worklist at the node. If
the current node represents ¬ϕ (Line 5), the algorithm flips the sign of each entry in
worklist[vϕ]; this operation is denoted as −worklist[vϕ]. Consider the case where the
current node vψ is a conjunction ϕ1 ∧ ϕ2. The sequence of upper bounds and the se-
quence of lower bounds of the entries in worklist[vϕ1

] and worklist[vϕ1
] can be each

thought of as a piecewise-constant signal (likewise for worklist[vϕ2 ). In Line 11, the al-
gorithm computes a pointwise-minimum over piecewise-constant signals representing
the upper and lower bounds of the RoSIs of its arguments. Note that if for i = 1, 2,
if worklist[vϕi

] has Ni entries, then the pointwise-min would have to be performed at



mostN1+N2 distinct time-points. Thus, worklist[vϕ1∧ϕ2
] has at mostN1+N2 entries.

A similar phenomenon can be seen in Fig. 3, where computing a max over the worklists
of v3[b,c](x>0)

and v¬(y>0) leads to an increase in the number of entries in the worklist
of the disjunction.

For nodes corresponding to temporal operators, e.g., 3Iϕ, the algorithm first up-
dates worklist[vϕ]. It then applies Alg. 1 to compute the sliding maximum over worklist[vϕ].
Note that if worklist[vϕ] contains N entries, so does worklist[v3Iϕ].

A further optimization can be implemented on top of this basic scheme. For a node
v corresponding to the subformula HIϕ, the first few entries of worklist[v] (say up to
time u) could become singular intervals once the required RoSIs for worklist[vϕ] are
available. The optimization is to only compute SlidingMax over worklist[vϕ] starting
from u+ inf(I). We omit the pseudo-code for brevity.

5 Monitoring untimed formulas

If the STL formula being monitored has untimed (i.e. infinite-horizon) temporal oper-
ators, a direct application of Alg. 2 requires every node in the sub-tree rooted at the
untimed operator to have a time horizon that is unbounded, or in other words, the algo-
rithm would have to keep track of every value over arbitrarily long intervals. For a large
class of formulae (shown in Theorem 1), we can can perform robust online monitoring
using only a constant amount of memory. The question whether an arbitrary STL for-
mula outside of the fragment stated thus far can be monitored using constant memory
remains an open problem. We now show how constant memory monitoring can be per-
formed for the first set of formulae. In what follows, we assume that the subformulae ϕ
and ψ are atomic predicates of the form f(x) > 0. Also, we assume that the domain of
signals is a compact set, and replace inf and sup by min and max respectively.

First, we introduce some equivalences over intervals a, b, c that we use in the theo-
rem and the proof to follow:

min(max(a, b),max(a, c)) = max(a,min(b, c)) (5.1)
min(a,max(b, c)) = max(min(a, b),min(a, c)) (5.2)
max(max(a, b), c) = max(a, b, c) (5.3)
min(max(a, b), a) = a (5.4)

Theorem 1. For each of the following formulae, where ϕ and ψ are atomic predicates
of the form f(x) > 0, we can monitor interval robustness in an online fashion using
constant memory: (1) 2ϕ, 3ϕ, (2) ϕUψ, (3) 2(ϕ∨3ψ), 3(ϕ∧2ψ), (4) 23ϕ, 32ϕ,
and (5) 3(ϕ ∧3ψ), 2(ϕ ∨2ψ).

Proof. We consider each of the five cases of the theorem in turn. The proof strategy is
to show that if a constant memory buffer has been used to monitor up to n samples, then
receiving an additional sample does not require the memory to grow. In what follows,
we use the following short-hand notation:

pi ≡ [ρ](f(x)>0,x[0,n+1], ti) qi ≡ [ρ](g(x)>0,x[0,n+1], ti) (5.5)

Note that if i ∈ [0, n], then pi is the same over the partial signal x[0,n], i.e., pi =
[ρ](f(x)>0,x[0,n], ti) (and respectively for qi). We will use this equivalence in several
of the steps in what follows.



(1) 2ϕ, where ϕ ≡ f(x) > 0. Observe the following:

[ρ](ϕ,x[0,n+1], 0) = min
i∈[0,n+1]

pi = min

(
min
i∈[0,n]

pi, pn+1

)
(5.6)

In the final expression above, observe that the first entry does not contain any pn+1

terms, i.e., it can be computed using the data points x1, . . . ,xn in the partial signal
x[0,n] itself. Thus, for all n, if we maintain the one interval representing the min of the
first n values of f(x) as a summary, then we can compute the interval robustness of
2(f(x)>0) over x[0,n+1] with the additional data xn+1 available at tn+1. Note for the
dual formula 3(f(x)>0), a similar result holds with min substituted by max.
(2) ϕUψ, where ϕ ≡ f(x)>0, and ψ ≡ g(x)>0. Observe the following:

[ρ](ϕUψ,x[0,n+1], 0) = max
i∈[0,n+1]

min(qi, min
j∈[0,i]

pj) (5.7)

We can rewrite the RHS of Eq. (5.7) to get:

max

(
max
i∈[0,n]

min

(
qi, min

j∈[0,i]
pj

)
, min

(
min
j∈[0,n]

pj , pn+1, qn+1

))
(5.8)

Let Un and Mn respectively denote the first and second underlined terms in the above
expression. Note that for any n,Un andMn can be computed only using data x1, . . . ,xn.
Consider the recurrencesMn+1 = min(Mn, pn+1, qn+1) andUn+1 = max(Un,Mn+1);
we can observe that to computeMn+1 andUn+1, we only needMn,Un, and xn+1. Fur-
thermore, Un+1 is the desired interval robustness value over the partial signal x[0,n+1].
Thus storing and iteratively updating the two interval-values Un and Mn is enough to
monitor the given formula.
(3) 2(ϕ ∨3ψ), where ϕ ≡ f(x)>0, and ψ ≡ g(x)>0. Observe the following:

[ρ](2(ϕ ∨3ψ),x[0,n+1], 0) = min
i∈[0,n+1]

max

(
pi, max

j∈[i,n+1]
qj

)
= min
i∈[0,n+1]

max

(
pi, max

j∈[i,n]
qj , qn+1

) (5.9)

Repeatedly applying the equivalence (5.1) to the outer min in (5.9) we get:

max

(
qn+1, min

i∈[0,n+1]
max

(
pi, max

j∈[i,n]
qj

))
(5.10)

The inner min simplifies to:

max

(
qn+1,min

(
pn+1, min

i∈[0,n]

(
max

(
pi, max

j∈[i,n]
qj

))))
(5.11)

Let Tn denote the underlined term; note that we do not require any data at time tn+1 to
compute it. Using the recurrence Tn+1 = max (qn+1,min (pn+1, Tn)), we can obtain
the desired interval robustness value. The memory required is that for storing the one
interval value Tn. A similar result can be established for the dual formula 3(f(x) >
0 ∧2(g(x)>0)).
(4) 23(ϕ), where ϕ ≡ f(x)>0. Observe the following:

[ρ](23(ϕ,x[0,n+1], 0) = min
i∈[0,n+1]

max
j∈[i,n+1]

pj (5.12)

Rewriting the outer min operator and the inner max more explicitly, we get:

min

(
min
i∈[0,n]

max

(
max
j∈[i,n]

pj , pn+1

)
, pn+1

)
(5.13)



Repeatedly using (5.1) to simplify the above underlined term we get:

min

(
max

(
pn+1, min

i∈[0,n]
max
j∈[i,n]

pj

)
, pn+1

)
= pn+1. (5.14)

The simplification to pn+1, follows from (5.4). Thus, to monitor 23(f(x)>0), we
do not need to store any information, as the interval robustness simply evaluates to that
of the predicate f(x) > 0 at time tn+1. A similar result can be obtained for the dual
formula 32(f(x)>0).
(5) 3(ϕ ∧3(ψ)), where ϕ ≡ f(x)>0 ψ ≡ 3(g(x)>0)). Observe the following:

[ρ](3(ϕ ∧3(ψ)),x[0,n+1], 0) = max
i∈[0,n+1]

(
min

(
pi, max

j∈[i,n+1]
qj

))
(5.15)

We can rewrite the RHS of Eq. (5.15) as the first expression below. Applying the equiv-
alence in (5.2) and (5.3) to the expression on the left, we get the expression on the
right.

max


min (p0,max (q0, . . . , qn+1))

· · ·
min (pn,max (qn, qn+1))

min (pn+1, qn+1)

 = max


min(p0, q0), . . . ,min(p0, qn+1),

· · ·
min(pn, qn),min(pn, qn+1),

min(pn+1, qn+1)


(5.16)

Grouping terms containing qn+1 together and applying the equivalence in (5.2) we get:

max


max


min(p0, q0),min(p0, q1), . . . ,min(p0, qn),

min(p1, q1), . . . ,min(p1, qn),

· · ·
min(pn, qn)

 ,

min(qn+1,max(p0, p1, . . . , pn)),

min(pn+1, qn+1)


(5.17)

Observe that the first argument to the outermost max can be computed using only
x1, . . . ,xn. Suppose we denote this term Tn. Also note that in the second argument,
the inner max (underlined) can be computed using only x1, . . . ,xn. Let us denote this
term by Mn. We now have a recurrence relations:

Mn+1 = max(Mn, pn+1), (5.18)
Tn+1 = max(Tn,min(qn+1,Mn),min(qn+1, pn+1)), (5.19)

where T0 = min(p0, q0) and M0 = p0. Thus, the desired interval robustness can be
computed using only two values stored in Tn and Mn. The dual result holds for the
formula 2(ϕ ∨2(ψ)).

Remarks on extending the above result: The result in Theorem 1 can be generalized to
allow ϕ and ψ that are not atomic predicates, under following two conditions:

1. Bounded horizon subformulae condition: For each formula, the subformulae ϕ and
ψ have a bounded time-horizon, i.e., hor(ϕ) and hor(ψ) are closed intervals.

2. Smallest step-size condition: Consecutive time-points in the signal are at least ∆
seconds apart, for some finite ∆, which is known a priori.



We defer the proof of the general case to the full version of the paper [4], but remark
that the proof techniques are very similar. Let w denote the least upper bound of the
time horizon for all subformulae of a given untimed formula. At any time tn, additional
book-keeping is required to store partial information for time-points in the range [tn −
w, tn]. By the step-size condition there can be at most dw∆e time-points in this range.
This is then used to show that constant memory proportional to dw∆e is sufficient to
monitor such an untimed formula (with bounded-horizon subformulae).

6 Experimental Results

We implemented Algorithm 2 as a stand-alone tool that can be plugged in loop with any
black-box simulator and evaluated it using two practical real-world applications. We
considered the following criteria: (1) On an average, what fraction of simulation time
can be saved by online monitoring? (2) How much overhead does online monitoring
add, and how does it compare to a naı̈ve implementation that at each step recomputes
everything using an offline algorithm?

Diesel Engine Model (DEM).
The first case study is an industrial-sized Simulink R©model of a prototype airpath sys-
tem in a diesel engine. The closed-loop model consists of a plant model describing
the airpath dynamics, and a controller implementing a proprietary control scheme. The
model has more than 3000 blocks, with more than 20 lookup tables approximating high-
dimensional nonlinear functions. Due to the significant model complexity, the speed of
simulation is about 5 times slower, i.e., simulating 1 second of operation takes 5 sec-
onds in Simulink R©. As it is important to simulate this model over a long time-horizon to
characterize the airpath behavior over extended periods of time, savings in simulation-
time by early detection of requirement violations is very beneficial. We selected two
parameterized safety requirements after discussions with the control designers, (shown
in Eq. (6.1)-(6.2)). Due to proprietary concerns, we suppress the actual values of the
parameters used in the requirements.

ϕovershoot(p1) = 2[a,b](x < c) (6.1)
ϕtransient(p2) = 2[a,b](|x| > c =⇒ (3[0,d]|x| < e)) (6.2)

Property ϕovershoot with parameters p1 = (a, b, c) specifies that in the interval
[a, b], the overshoot on the signal x should remain below a certain threshold c. Property
ϕtransient with parameters p2 = (a, b, c, d, e) is a specification on the settling time of
the signal x. It specifies that in the time interval [a, b] if at some time t, |x| exceeds
c then it settles to a small region (|x| < e) before t + d. In Table 1, we consider
three different valuations ν1, ν2, ν3 for p1 in the requirement ϕovershoot(p1), and two
different valuations ν4, ν5 for p2 in the requirement ϕtransient(p2).

The main reason for the better performance of the online algorithm is that simula-
tions are time-consuming for this model. The online algorithm can terminate a simu-
lation earlier (either because it detected a violation or obtained a concrete robust satis-
faction interval), thus obtaining significant savings. For ϕovershoot(ν3), we choose the
parameter values for a and b such that the online algorithm has to process the entire
signal trace, and is thus unable to terminate earlier. Here we see that the total overhead



Requirement Num. Early Simulation Time (hours)

Traces Termination Offline Online

ϕovershoot(ν1) 1000 801 33.3803 26.1643
ϕovershoot(ν2) 1000 239 33.3805 30.5923
ϕovershoot(ν3) 1000 0 33.3808 33.4369
ϕtransient(ν4) 1000 595 33.3822 27.0405
ϕtransient(ν5) 1000 417 33.3823 30.6134

Table 1. Experimental results on DEM.

STL Test Bench Num. Early Sim. Time (mins) Overhead (secs)

Traces Termination Offline Online Naı̈ve Alg. 2

avoid front 1776 466 296 258 553 9
avoid left 1778 471 296 246 1347 30
avoid right 1778 583 296 226 1355 30
hill climb1 1777 19 395 394 919 11
hill climb2 1556 176 259 238 423 7
hill climb3 1556 124 259 248 397 7
filter 1451 78 242 236 336 6
keep bump 1775 468 296 240 1.2×104 268
what hill 1556 71 259 253 1.9×104 1.5×103

Table 2. Evaluation of online monitoring for CPSGrader.

(in terms of runtime) incurred by the extra book-keeping by Algorithm 2 is negligible
(about 0.1%).

CPSGrader.
CPSGrader [17, 8] is a publicly-available automatic grading and feedback generation
tool for online virtual labs in cyber-physical systems. It employs temporal logic based
testers to check for common fault patterns in student solutions for lab assignments.
CPSGrader uses the National Instruments Robotics Environment Simulator to gener-
ate traces from student solutions and monitors STL properties (each corresponding to a
particular faulty behavior) on them. In the published version of CPSGrader [17], this is
done in an offline fashion by first running the complete simulation until a pre-defined
cut-off and then monitoring the STL properties on offline traces. At a step-size of 5 ms,
simulating 6 sec. of real-world operation of the system takes 1 sec. for the simulator.
When students use CPSGrader for active feedback generation and debugging, simula-
tion constitutes the major chunk of the application response time. Online monitoring
helps in reducing the response time by avoiding unnecessary simulations, giving the
students feedback as soon as faulty behavior is detected.

We evaluated Alg. 2 on the signals and STL properties used in CPSGrader [17, 8].
These signal traces result from running actual student submissions on a battery of tests
such as failure to avoid obstacles in front, failure to re-orient after obstacle avoidance,
failure to reach the target region (top of a hill), failure to detect the hill, and failure to



use a correct filter in order to climb a hill. For lack of space, we refer the reader to [17]
for further details. As an illustrative example, consider keep bump property in Eq. 6.3:

ϕkeep bump = 3[0,60]2[0,5] (bump right(t) ∨ bump left(t)) (6.3)

The keep bump formula checks whether when the bump signal is activated (i.e., the
robot bumps into an obstacle either from the left or the right), the controller keeps mov-
ing forward for some time instead of driving back in order to avoid the obstacle. For
each STL property, Table 2 compares the total simulation time needed for both the on-
line and offline approaches, summed over all traces. For the offline approach, a suitable
simulation cut-off time of 60 sec. is chosen. At a step-size of 5 ms, each trace is roughly
of length 1000. For the online algorithm, simulation terminates before this cut-off if
the truth value of the property becomes known, otherwise it terminates at the cut-off.
Table 2 also shows the monitoring overhead incurred by a naı̈ve online algorithm that
performs complete recomputation at every step against the overhead incurred by Alg. 2.
Table 2 demonstrates that online monitoring ends up saving up to 24% simulation time
(> 10% in a majority of cases). The monitoring overhead of Alg. 2 is negligible (< 1%)
as compared to the simulation time and it is less than the overhead of the naı̈ve online
approach consistently by a factor of 40x to 80x.

7 Conclusions and Future Work

We have defined robust interval semantics for Signal Temporal Logic formulas over
partial signal traces. The robust satisfaction interval (RoSI) of a partial signal contains
the robust satisfaction value of any possible suffix of the given partial signal. We present
an online algorithm to compute RoSI for a large class of STL formulas. Generalizations
to full STL and considering signal traces defined by piecewise linear interpolation over
given discrete-time points are important directions for future work.
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